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Preface

Computational methods in quantum chemistry often require an extensive handling of large
matrices. As such, fundamental linear algebra techniques are necessary for solving eigenvalue
problems like the Schrödinger equation.

ĤΨ = EΨ (1)

Diagonalization

Diagonalization involves converting a square matrix into a diagonal matrix constructed from
its eigenvalues and finding the eigenvectors that correspond to those eigenvalues. A matrix
is considered diagonalizable if the following expression holds:

A = V ΛV −1 (2)

Where V is the eigenvector matrix of A and V −1 is its inverse. Λ is a diagonal matrix with
diagonal elements corresponding to the eigenvalues of A.

You can compute the inverse of V using the following:

V −1 =
1

|V |
adj(V ) (3)

|V | is the determinant of V and adj(V ) is the adjugate of V or the transpose of the cofactor
matrix of V .

A general eigensystem Aν = λν may be solved if (A − λI) is invertible. λ represents the
eigenvalues, ν is the set of eigenvectors, and I is the identity matrix. The eigenvalues may
be obtained by taking the determinant of (A−λI) and solving the characteristic polynomial
of A (i.e. finding the roots). The corresponding eigenvectors may be obtained by matching
the column-wise elements of ν with the row-wise elements of (A− λI).

(A− λI)ν = 0 (4)
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Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) decomposes A, an (m × n) matrix, into
three factors: U , Σ, and V T .

A = UΣV T (5)

• U is an orthogonal matrix of size (m × m).

• Σ is a diagonal matrix composed of the singular values with a dimensionality of
(m × n). The singular values are the square roots of non-negative eigenvalues
of the self-adjoint operator A†A or ATA for reals. ATA is a Hermitian matrix
with linearly independent eigenvectors and real eigenvalues. The eigenvalues of
a linear Hermitian operator can describe quantum observables.

• V T is an orthogonal matrix of size (n × n) that is constructed from the
normalized eigenvectors of A. For normalization, each scalar component is
divided by the norm of the vector.

• Orthogonal matrices are necessarily invertible and unitary (i.e. UTU = UUT = I
and V TV = V V T = I).

Suzuki-Trotter Approximation

Trotterization involves the decomposition of Hamiltonian operators for n-qubits or
quantum subsystems. This method makes quantum simulations for approximating the
full time-evolution Hamiltonian more tractable. This is a very basic description of the
Trotter method and its application within quantum computing for quantum chemistry.
Simply put, the Suzuki-Trotter approximation is based on the Lie product formula for
an exponential ansatz (e.g. Unitary Coupled Cluster). If operators Â and B̂ do not
commute, the following can be approximated:

eÂ+B̂ ≈ eÂeB̂ (6)

Which becomes exact at infinite order:

eÂ+B̂ = lim
n→∞

(
e

Â
n e

B̂
n

)n

(7)

Thus, the computational cost for diagonalizing a factorized system of matrices may be
reduced. Variational quantum eigensolvers (VQEs) are currently being developed to find
variational solutions to eigenvalue and optimization problems that cannot be efficiently
obtained using classical computers.
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Selected Exercises

1. Diagonalize matrix A and show that A = V ΛV −1 holds.

A =

[
6 3

−4 −1

]

det(A− λI) = 0 =⇒
∣∣∣∣6− λ 3
−4 −1− λ

∣∣∣∣ = 0

=⇒ (6− λ)(−1− λ) + 12 = 0 =⇒ 6− 5λ+ λ2 = 0 =⇒ (λ− 2)(λ− 3) = 0
=⇒ λ2 = 2 , λ1 = 3 :: sort in descending order

(A− λ2I) =

[
4 3
−4 −3

]
; (A− λ1I) =

[
3 3
−4 −4

]
(A− λ2I)ν = 0 ; (A− λ1I)ν = 0[

4 3
−4 −3

] [
ν1
ν2

]
= 0 :: For λ2

4ν1 + 3ν2 = 0 =⇒ ν1 = −0.75ν2 =⇒ V2 =

[
−0.75

1

]
[

3 −0.75
−4 1

] [
ν1
ν2

]
= 0 :: For λ1

3ν1 + 3ν2 = 0 =⇒ ν1 = −ν2 =⇒ V1 =

[
−1
1

]

V =

[
−1 −0.75
1 1

]
; V −1 =

[
−4 −3
4 4

]
; Λ = V −1AV =

[
3 0
0 2

]

A = V ΛV −1 =

[
6 3
−4 −1

]
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2. Using SVD, decompose matrix Z into U , Σ, and V T and show that Z = UΣV T holds.

Z =

[
2 0

1 3

]

ZTZ =

[
5 3
3 9

]

det(ZTZ − λI) = 0 =⇒
∣∣∣∣5− λ 3

3 9− λ

∣∣∣∣ = 0

=⇒ (5− λ)(9− λ)− 9 = 0 =⇒ 36− 14λ+ λ2 = 0
=⇒ λ2 = 3.3944 , λ1 = 10.6056 :: sort in descending order
=⇒
√
λ2 = 1.8424 ,

√
λ1 = 3.2566 :: compute singular values

Σ =

[
3.2566 0

0 1.8424

]
; Σ−1 =

[
0.3071 0

0 0.5428

]

(ZTZ − λ2I) =

[
1.6056 3

3 5.6056

]
; (ZTZ − λ1I) =

[
−5.6056 3

3 −1.6056

]
(ZTZ − λ2I)ν = 0 ; (ZTZ − λ1I)ν = 0[
1.6056 3

3 5.6056

] [
ν1
ν2

]
= 0 :: For λ2

1.6056ν1 + 3ν2 = 0 =⇒ ν1 = −1.8655ν2 =⇒ V2 =

[
−1.8655

1

]
∗ 1

2.1193
:: divide by ||V2||[

−5.6056 3
3 −1.6056

] [
ν1
ν2

]
= 0 :: For λ1

−5.6056ν1 + 3ν2 = 0 =⇒ ν1 = 0.5352ν2 =⇒ V1 =

[
0.5352

1

]
∗ 1

1.1342
:: divide by ||V1||

V =

[
0.4719 −0.8817
0.8817 0.4719

]
; V T =

[
0.4719 0.8817
−0.8817 0.4719

]
; U = ZV Σ−1 =

[
0.2898 −0.9571
0.9571 0.2898

]

Z = UΣV T =

[
1.99997 −0.00003
0.99995 2.99999

]
≈

[
2 0
1 3

]
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