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Preface

Hartree-Fock (HF) is an ab initio quantum chemical method for approximating the solution
to the many-electron Schrödinger equation. It is an independent particle model—
meaning that the many-electron problem is recast into a series of independent single-electron
problems. HF is often referred to as a mean field theory because each electron interacts
electrostatically with the average charge distribution of the other N − 1 electrons. The HF
method can be used to calculate the electronic structure of atoms and serves as the rigorous
foundation for molecular orbital (MO) theory as it involves the linear combination of atomic
orbitals (LCAO). As such, it provides an approximate description of bonding in molecules
which is central to exploring chemical reactions. Much of the groundwork for advanced
chemical theory and computational electronic structure methods is rooted in the simple, but
powerful HF approximation.

Variational Method

Within the “standard” interpretation of quantum mechanics, we posit that the wavefunction
Ψ represents the state of a system and encapsulates all information about said system prior
to measurement. Naturally, we would want to determine how Ψ is constructed if we wish to
obtain observable properties of a quantum system.

Let’s begin with a trial wavefunction Ψ̃ to simulate the exact ground state wavefunction Ψ0,
the lowest eigenstate of the Hamiltonian Ĥ. We can express our trial state vector as a linear
combination of basis vectors:

|Ψ̃〉 =
∑
i

ci |φi〉 (1)

Provided that Ψ̃ is normalized, the square modulus of each expansion coefficient should sum
to 1:

〈Ψ̃|Ψ̃〉 =
∑
i

|ci|2 = 1 (2)

The set of basis vectors in Hilbert space {|φi〉} ∈ H are chosen to be orthonormal 〈φi|φj〉 = δij
and satisfy the completeness relation (also known as the resolution of the identity):

∑
i

|φi〉 〈φi| = 1 (3)

In practice, we’ll need to truncate the basis set and use a finite expansion that is, per se,
“approximately complete”. At this point, one may compute the expectation value for the
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total energy of the system using the trial wavefunction. However, the variational principle
states that the expectation value for the energy of an approximate ground state wavefunction
Ẽ is always greater than or equal to the expectation value for the energy of the true ground
state wavefunction E0 (vide infra).

The Variational Theorem:

〈Ψ̃| Ĥ |Ψ̃〉
〈Ψ̃|Ψ̃〉

≥ E0 (4)

Provisional Conditions:

{|φi〉} ∈ H 〈φi|φj〉 = δij
∑
i

|φi〉 〈φi| = 1

|Ψ̃〉 =
∑
i

ci |φi〉 〈Ψ̃|Ψ̃〉 =
∑
i

|ci|2 = 1

Proof:

〈Ĥ − E0〉 =
〈Ψ̃| Ĥ − E0 |Ψ̃〉
〈Ψ̃|Ψ̃〉

(5)

=

〈
∑
i

ciφi| Ĥ − E0 |
∑
i

cjφj〉

〈
∑
i

ciφi|
∑

i cjφj〉
(6)

=

∑
ij

c∗i cj 〈φi| Ĥ − E0 |φj〉∑
ij

c∗i cj 〈φi|φj〉
(7)

=

∑
ij

c∗i cj 〈φi| Ĥ |φj〉 −
∑
ij

c∗i cj 〈φi|E0 |φj〉∑
ij

c∗i cj 〈φi|φj〉
(8)

=

∑
ij

c∗i cj 〈φi|Ej |φj〉 −
∑
ij

c∗i cj 〈φi|E0 |φj〉∑
ij

c∗i cj 〈φi|φj〉
(9)
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=

∑
ij

c∗i cjEj 〈φi|φj〉 −
∑
ij

c∗i cjE0 〈φi|φj〉∑
ij

c∗i cj 〈φi|φj〉
(10)

=

∑
ij

c∗i cjEjδij −
∑
ij

c∗i cjE0δij∑
ij

c∗i cjδij
(11)

=

∑
i

c∗i ciEi −
∑
i

c∗i ciE0∑
i

c∗i ci
(12)

=

∑
i

c∗i ci(Ei − E0)∑
i

c∗i ci
(13)

=

∑
i

|ci|2 (Ei − E0)∑
i

|ci|2
(14)

The terms
∑
i

|ci|2 and (Ei − E0) are necessarily positive. Thus,

∑
i

|ci|2 (Ei − E0)∑
i

|ci|2
≥ 0 (15)

Recall
∑
i

|ci|2 = 1 and that Ei = Ẽ because it is the energy of the approximate

ground state wavefunction Ψ̃.

(Ẽ − E0) ≥ 0 (16)

Ẽ ≥ E0 (17)
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It follows that that the energy of any trial wavefunction Ẽ is always an upper bound
to the exact ground state energy E0.

〈Ψ̃| Ĥ |Ψ̃〉
〈Ψ̃|Ψ̃〉

≥ E0 (18)

�

Hartree Product

We must now find an approach, an ansatz, to build a wavefunction that describes the entire
system of electrons. One may choose to approximate the wavefunction as a product of
independent one-electron orbitals. This construction is known as a Hartree product.

Ψ (r1, r2, r3, . . . , rn) = ψ (r1)ψ (r2)ψ (r3) · . . . · ψ (rn) (19)

However, there are some problems with taking this approach. Firstly, we assume that
the electrons do not interact with each other. More explicitly, we ignore electron-electron
repulsion. Although the Schrödinger equation is now separable, a significant portion of
electron correlation is left out. Additionally, we do not account for electrons being identical
particles. Elementary particles, such as the electron, are said to be indistinguishable. We
can index the orbitals for the sake of numerical counting, but we can’t classically assign
labels to individual electrons as the uncertainty principle disallows us from following specific
quantum particles. This concept must be included in order to capture the correct physics.

Antisymmetry Principle

Electrons are fermions. They abide by Fermi-Dirac statistics which specify energy level
occupation rules for spin 1/2 particles. This differs from the behavior of integer spin particles
(bosons), in which an unlimited number of them may occupy a single state (i.e. Bose-
Einstein condensate). Following the Pauli exclusion principle, electrons with the same
quantum numbers may not occupy the same state. This idea actually emerges from the
more fundamental concept, the antisymmetry principle.
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The Antisymmetry Principle: Electronic wavefunctions must be anti-symmetric
with respect to the interchange of any two electrons. Let us start with a wavefunction
describing a system with just two electrons. If we swap the spin-spatial coordinates
for each electron, x1 and x2, then the result is the same wavefunction with a phase
factor of −1.

Ψ (x1,x2) = −Ψ (x2,x1) (20)

For bosons, the result is the same except with a phase factor of +1. In other words,
the wavefunction remains symmetric under the exchange of any two bosons.

Slater Determinant

We need to define a wavefunction ansatz to satisfy both indistinguishability and the anti-
symmetry principle. Using our two electron example, we can use the following wavefunction:

Ψ (x1,x2) =
1√
2

[
χ1(x1)χ2(x2)− χ1(x2)χ2(x1)

]
(21)

Notice that this form resembles that of a matrix determinant:

Ψ (x1,x2) =
1√
2

∣∣∣∣∣∣
χ1(x1) χ2(x1)

χ1(x2) χ2(x2)

∣∣∣∣∣∣ (22)

χ is a spin-orbital that is a function of space and spin → x = (r, ω). The coordinates of
both dimensional types are separable:

χ(x) = ψ(r)σ(ω) (23)

ψ(r) and σ(ω) are spatial and spin parts of the wavefunction respectively. The spin part can
take on the up α(ω) or down β(ω) spin configuration.

We can confirm that this is a usable representation by allowing two electrons to be in the
same orbital (i.e. let χ1 = χ2). Ψ (x1,x2) goes to zero if this happens. It follows that the
probability of two electrons occupying the same state goes to zero. This result is consistent
with Pauli exclusion. We can generalize suitable wavefunction expressions for N electrons
with the so-called Slater determinant (SD).
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The Slater Determinant: Anti-symmetric wavefunctions for atoms and molecules
can be generated using a normalized determinantal structure.

|Ψ〉 =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χN(x2)

...
...

. . .
...

χ1(xN) χ2(xN) · · · χN(xN)〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(24)

The normalization factor 1/
√
N ! ensures that the total probability density over all space

is unity → 〈Ψ|Ψ〉 = 1. Moving across columns increases the orbital index whereas
moving down rows increases the particle index—both to the extent of N electrons.
The SD can be written in shorthand as a product of diagonals:

|Ψ〉 = |ijk · · ·n〉 (25)

The letters i, j, k, . . . , n correspond to the set of spin-orbitals {χi} with arbitrary spin.

Let’s do an example. If we have 3 electrons in 3 spin-orbitals, there are 3! pairwise
permutations that can be performed. In quantum mechanics, we use the permutation
operator P̂ij to swap two different indices corresponding to orbitals or electron

coordinates. It is linear, unitary, Hermitian, and idempotent. P̂ij has the following
properties:

[P̂ij, Ĥ] = 0 P̂2
ij = P̂ij = 1 (26)

For an odd number of permutations (an anti-symmetric operation), we get a prefactor
of −1 and, for an even number of permutations (a symmetric operation), we get +1.
Let’s show this. Consider the SD:

|Ψ〉 = |123〉 (27)

Perform every combination of pairwise exchange:

|Ψ〉 = |123〉 = − |132〉 = |312〉 = − |321〉 = |231〉 = − |213〉 (28)
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Write out the SD:

|Ψ〉 =
1√
6

[
χ1(1)χ2(2)χ3(3)− χ1(1)χ2(3)χ3(2) + χ1(3)χ2(1)χ3(2) (29)

− χi(3)χ2(2)χ3(1) + χ1(2)χ2(3)χ3(1)− χ1(2)χ2(1)χ3(3)
]

Molecular Hamiltonian

We’re in a good spot. We now have a proper way to express a many-electron wavefunction.
We can compute a wide assortment of properties pertaining to our N electron system of
interest. In particular, we can determine the total energy of any molecule. To do that, we’ll
need a Hamiltonian operator that corresponds to all the kinetic and potential energies of
the molecular system→ Ĥ = T̂elec + T̂nuc + V̂elec + V̂nuc. In the time-independent framework,
we are concerned with finding stationary states. We shall use our non-relativistic, time-
independent Hamiltonian to calculate the expectation value for the total energy.

The Molecular Hamiltonian:

Ĥ =−
Nelec∑
i=1

~2

2me

∇2
i −

Nnuc∑
A=1

~2

2MA

∇2
A −

Nelec∑
i=1

Nnuc∑
A=1

ZAe
2

4πε0riA
+

Nelec∑
i=1

Nelec∑
j>i

e2

4πε0rij
(30)

+
Nnuc∑
A=1

Nnuc∑
B>A

ZAZBe
2

4πε0RAB

Defining constants and variables:

• ~ is the reduced Planck constant
• me is the mass of an electron
• ∇2 is the Laplacian operator
• MA is the mass of a nucleus
• ZA is the atomic number of a nucleus
• riA = |ri −RA| is the distance between an electron and nucleus
• rij = |ri − rj| is the distance between two electrons
• RAB = |RA −RB| is the distance between two nuclei
• k−1e = 4πε0 is the inverse of the Coulomb constant
• e is the elementary charge of a proton (+) or an electron (−)
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We can simplify this expression further by setting ~ = me = k−1e = e = 1. By doing
this we begin working in atomic units. We now have:

Ĥ =−
Nelec∑
i=1

1

2
∇2
i −

Nnuc∑
A=1

1

2MA

∇2
A −

Nelec∑
i=1

Nnuc∑
A=1

ZA
riA

+

Nelec∑
i=1

Nelec∑
j>i

1

rij
(31)

+
Nnuc∑
A=1

Nnuc∑
B>A

ZAZB
RAB

The molecular wavefunction depends on the positions of the electrons and nuclei.
The mass of a nucleus is many times greater than the mass of an electron (i.e. →
MA � me). Because kinetic energy is inversely proportional to mass, we can say that
the nuclei move at vastly different timescales than electrons. The nuclei considered to
be motionless with respect to the electrons! Therefore we can separate the molecular
wavefunction into electronic and nuclear parts:

Ψmol (ri,Ri) = Ψelec (ri; Ri) Ψnuc (Ri) (32)

This invocation is known as the Born-Oppenheimer approximation. Note that
the electronic wavefunction only depends parametrically on the nuclear coordinates.
Moving forward, we will just work with Ψelec. Since the nuclei appear fixed, we can
simplify the Hamiltonian further. The nuclear-nuclear repulsion term VNN remains
constant for each stationary state and can be added to the total energy later on.

Ĥ =−
Nelec∑
i=1

1

2
∇2
i −
��

��
�
��
�*0

Nnuc∑
A=1

1

2MA

∇2
A −

Nelec∑
i=1

Nnuc∑
A=1

ZA
riA

+

Nelec∑
i=1

Nelec∑
j>i

1

rij
(33)

+

��
��

�
��
��*
VNN

Nnuc∑
A=1

Nnuc∑
B>A

ZAZB
RAB

We now have what is known as the electronic Hamiltonian plus VNN :

Ĥ = −
Nelec∑
i=1

1

2
∇2
i︸ ︷︷ ︸

T̂elec

−
Nelec∑
i=1

Nnuc∑
A=1

ZA
riA︸ ︷︷ ︸

V̂
(1)
elec

+

Nelec∑
i=1

Nelec∑
j>i

1

rij︸ ︷︷ ︸
V̂

(2)
elec

+VNN︸︷︷︸
V̂nuc

(34)

Ĥ then becomes the sum of the electronic kinetic term T̂elec, the electron-nucleus
attraction term V̂

(1)
elec, the electron-electron repulsion term V̂

(2)
elec, and the nuclear-nuclear

repulsion term V̂nuc.
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Pople Notation

Probably the most onerous aspect of reading quantum chemistry literature is understanding
the index conventions. We will use the Pople notation going forward. We use Greek
letters (µ, ν, λ, . . .) to denote functions in the atomic orbital (AO) basis χµ and Latin letters
(i, j, k, . . .) to denote functions in the molecular orbital (MO) basis φp. For example:

χµ → |µ〉 |φp〉 → |p〉 (35)

Typically, (i, j, k, . . .) are reserved for occupied MOs and (p, q, r, . . .) correspond to all general
MOs. The letters (a, b, c, . . .) are often used to unoccupied or virtual MOs. These conventions
are usually upheld, but may not be depending on the kind of literature.

Take |p〉 , an MO written as a LCAO:

|p〉 =
∑
µ

cµp |µ〉 (36)

We can choose an AO basis set {|µ〉} that is normalized (or normalizable) but not necessarily
orthogonal. We generally don’t know the set of MO coefficients {cµi} to describe a set of
orthonormal MOs {|p〉}.

Basis Representation

Now, just what are the functional forms of {|µ〉}? For periodic systems, we can choose a
basis of plane waves of the following form:

φG(r) =
1√
Ω
ei
~G·~r (37)

where ~r is lattice position vector, ~G is the reciprocal lattice vector, and Ω is the unit cell
volume. For finite systems such as molecules, we can choose to use a basis of localised
Gaussian-type functions:

φGTOabc (x, y, z) = Nxaybzce−ζr
2

(38)

or Slater-type functions:

φSTOabc (x, y, z) = Nxaybzce−ζr (39)
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where x, y, z are the components of the position vector, N is the normalization constant,
orbital angular momentum L is defined by a + b + c, and ζ controls how tight (large
ζ) or diffuse (small ζ) the function is. Although Slater-type functions help properly model
the exponential decay of AOs/MOs at long range and capture the correct “cusp” behavior
as electrons closely approach other particles, they can take a long time to numerically
integrate. Most Slater-type basis sets (e.g. STO-nG) are actually mimicked by a combination
of Gaussian functions. Almost all molecular quantum chemistry software use basis sets
constructed out of atom-centered Gaussians.

Integrals

Let’s look at how we go about solving 〈Ψ| Ĥ |Ψ〉. Recall the electronic Hamiltonian:

Ĥ = −
Nelec∑
i

1

2
∇2
i −

Nelec∑
i,A

ZA
riA

+

Nelec∑
i>j

1

rij
(40)

Again, we can add the nuclear-nuclear repulsion energy VNN at the end. Now, for example,
consider a SD for two electrons written as |ij〉. We can write the expectation value for the
total energy of the state defined by |ij〉 as:

〈Ψ| Ĥ |Ψ〉 = 〈ij| −
Nelec∑
i

1

2
∇2
i −

Nelec∑
i,A

ZA
riA

+

Nelec∑
i>j

1

rij
|ij〉 (41)

We can employ the interchange theorem because, in our case, summation and integration
commute. This lets us move summation terms in and out of integral arguments (i.e. bra-kets).

Let’s have a look at the kinetic energy term:

〈ij| −
Nelec∑
i

1

2
∇2
i |ij〉 (42)

Expand the SDs out:

(
1√
2

)(
1√
2

)(
−1

2

)Nelec∑
i

[
〈ij| ∇2

i |ij〉 − 〈ji| ∇2
i |ij〉+ 〈ji| ∇2

i |ji〉 − 〈ij| ∇2
i |ji〉

]
(43)

The Laplacian operator ∇2 is a one-electron operator involved in one-electron integrals. It
is an operator for a single particle observable and does not “know” anything about orbitals
with an index different from its own. The 1/

√
2 factors are the normalization constants from

〈ij| and |ij〉.
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One-Electron Integrals: Example—setting up an expectation value expression for
the kinetic energy using a two-electron SD. Now let us operate solely on one of the
electrons. We can partition the terms as follows:

Term 1: (
−1

4

)[
〈i(1)j(2)| ∇2

1 |i(1)j(2)〉
]

=

(
−1

4

)
〈i(1)| ∇2

1 |i(1)〉����
��:1

〈j(2)|j(2)〉 (44)

=

(
−1

4

)
〈i(1)| ∇2

1 |i(1)〉 (45)

Term 2: (
−1

4

)[
−〈j(1)i(2)| ∇2

1 |i(1)j(2)〉
]

=

(
1

4

)
〈j(1)| ∇2

1 |i(1)〉����
��:0

〈i(2)|j(2)〉 (46)

= 0 (47)

Term 3: (
−1

4

)[
〈j(1)i(2)| ∇2

1 |j(1)i(2)〉
]

=

(
−1

4

)
〈j(1)| ∇2

1 |j(1)〉����
��:1〈i(2)|i(2)〉 (48)

=

(
−1

4

)
〈j(1)| ∇2

1 |j(1)〉 (49)

Term 4: (
−1

4

)[
−〈i(1)j(2)| ∇2

1 |j(1)i(2)〉
]

=

(
1

4

)
〈i(1)| ∇2

1 |j(1)〉����
��:0

〈j(2)|i(2)〉 (50)

= 0 (51)

Since we’re working with an orthnormal set of MOs, the “single-bar” integrals 〈i|j〉
and 〈j|i〉 will go to zero while the integrals left over from the action of the Laplacian
〈i|i〉 and 〈j|j〉 will go to one. So then,

〈ij| − 1

2
∇2

1 |ij〉 =

(
−1

4

)[
〈i(1)| ∇2

1 |i(1)〉+ 〈j(1)| ∇2
1 |j(1)〉

]
(52)

Similarly, the expressions for the kinetic energy operator acting on the second electron
are written as:

〈ij| − 1

2
∇2

2 |ij〉 =

(
−1

4

)[
〈i(2)| ∇2

1 |i(2)〉+ 〈j(2)| ∇2
1 |j(2)〉

]
(53)

Because electrons are indistinguishable, the integrals 〈i(1)| ∇2
1 |i(1)〉 and 〈i(2)| ∇2

2 |i(2)〉
are equal, as are the integrals 〈j(1)| ∇2

1 |j(1)〉 and 〈j(2)| ∇2
2 |j(2)〉.
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The kinetic energy operator and the electron-nucleus attraction operator are factored into
what is commonly known as the core Hamiltonian:

ĥ = −
Nelec∑
i

1

2
∇2
i −

Nelec∑
i,A

ZA
riA

(54)

Now, how do we deal with the two-electron integrals? The action of the Coulomb operator
1/rij relies on the distances between occupied orbitals. We can sandwich the operator between
two SDs to yield the following:

〈ij|
Nelec∑
i>j

1

rij
|ij〉 (55)

The sum of all pairwise interactions runs over the indices where i 6= j.

Two-Electron Integrals: Example—setting up an expectation value expression for
the electron-electron repulsion energy using a two-electron SD.

〈ij| 1

r12
|ij〉 (56)

Expand determinants:

(
1√
2

)(
1√
2

)〈ij| 1

r12
|ij〉+ 〈ji| 1

r12
|ji〉︸ ︷︷ ︸

same

−〈ij| 1

r12
|ji〉 − 〈ji| 1

r12
|ij〉︸ ︷︷ ︸

same

 (57)

Since the distance between i and j is the same as the distance between j and i,
equivalent terms will emerge:(

1

2

)[
2 〈ij| 1

r12
|ij〉 − 2 〈ij| 1

r12
|ji〉
]

(58)

Simplifying further:

〈ij| 1

r12
|ij〉︸ ︷︷ ︸

Coulomb J

−〈ij| 1

r12
|ji〉︸ ︷︷ ︸

Exchange K

(59)
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We are left with two terms—Coulomb J and exchange K. The operator hats are
dropped since they now represent expectation values. Both terms are usually referred
to as electron repulsion integrals (ERIs) or four-center two-electron integrals.
Together, they are expressed as a “double-bar” integral:

Nelec∑
i>j

〈ij| |ij〉 (60)

The Coulomb operator Ĵ corresponds to the classical electrostatic repulsion between
charged particles. Its action best represented by its operation on an arbitrary spin-
orbital χi(x1) :

Ĵj(x1) |χi(x1)〉 = 〈χj(x2)|
1

r12
|χj(x2)〉 |χi(x1)〉 (61)

=

∫ [
χ∗j(x2)

1

r12
χj(x2) dx2

]
χi(x1) (62)

This gives the average potential that the electron in orbital χi with coordinates x1

“feels” due to the charge density generated by χj with coordinates x2. One could

say that Ĵ is an effective one-electron operator because each electron becomes an
independent particle interacting with a mean field generated by all other N − 1
electrons. In a simple mathematical sense, we can solve for the total expectation
value for the Coulomb potential by integrating over all possible coordinates for the
electrons at play:

〈χi(x1)χj(x2)| Ĵ |χi(x1)χj(x2〉) = 〈χi(x1)χj(x2)|
1

r12
|χi(x1)χj(x2〉) (63)

=

∫∫
χ∗i (x1)χ

∗
j(x2)

1

r12
χi(x1)χj(x2) dx1 dx2 (64)

The exchange operator K̂ is a bit unique. It is a direct consequence of the antisymmetry
principle for which there is no classical analogue. Exchange integrals take on a form
similar to that of Coulomb integrals except now the orbital indices i and j are permuted
in the ket.

〈χi(x1)χj(x2)| K̂ |χi(x1)χj(x2〉) = 〈χi(x1)χj(x2)|
1

r12
|χj(x1)χi(x2〉) (65)

=

∫∫
χ∗i (x1)χ

∗
j(x2)

1

r12
χj(x1)χi(x2) dx1 dx2 (66)
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Integral Notation

Integral notation can be cumbersome, but it’s important to stay consistent when derivations
get messy. Thus far, for explicit integrals and bra-kets, we have been using physicists’
notation. However, there is also the widely adopted chemists’ notation. I know right?
What strange folk would confuse us like that?

Integral Notation:

Physicists’ Notation:

〈pq|rs〉 = 〈χpχq|χrχs〉 =

∫∫
χ∗p(x1)χ

∗
q(x2)

1

r12
χr(x1)χs(x2) dx1 dx2 (67)

〈pq| |rs〉 = 〈pq|rs〉 − 〈pq|sr〉 (68)

=

∫∫
χ∗p(x1)χ

∗
q(x2)

1

r12
(1− P̂12)χr(x1)χs(x2) dx1 dx2 (69)

=

∫∫
χ∗p(x1)χ

∗
q(x2)

1

r12
χr(x1)χs(x2) dx1 dx2 (70)

−
∫∫

χ∗p(x1)χ
∗
q(x2)

1

r12
χs(x1)χr(x2) dx1 dx2 (71)

〈pq|rs〉 = 〈qp|sr〉 (72)

〈pq|rs〉 = 〈rs|pq〉∗ (73)

〈pq| |rr〉 = 0 (74)

Chemists’ Notation:

[pq|rs] = [χpχq|χrχs] =

∫∫
χ∗p(x1)χq(x1)

1

r12
χ∗r(x2)χs(x2) dx1 dx2 (75)

This notation signifies that we’re dealing with spin-orbitals. Using parentheticals, we
have chemists’ notation for spatial orbitals:

(pq|rs) = (ψpψq|ψrψs) =

∫∫
ψ∗p(r1)ψq(r1)

1

r12
ψ∗r(r2)ψs(r2) dr1 dr2 (76)

(pq|rs) = (rs|pq) (77)
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For the antisymmetrized two-electron integrals, the physicists’ notation maps onto the
chemists’ notation in the following way:

〈pq|rs〉 = 〈pq|rs〉 − 〈pq|sr〉 (78)

= [pr|qs]− [qs|pr] (79)

Shared Features:

〈i| ĥ |j〉 = [i|ĥ|j] =

∫
χ∗i (x1)ĥχj(x1) dx1 (80)

The one-electron integrals in chemists’ and physicists’ notation are identical. Here’s a
shortcut to understanding the notation conventions:

〈pq|rs〉 = 〈12|12〉 =

∫∫
χ∗p(1)χ∗q(2)

1

r12
χr(1)χs(2) dx1 dx2 (81)

[pq|rs] = [11|22] =

∫∫
χ∗p(1)χq(1)

1

r12
χ∗r(2)χs(2) dx1 dx2 (82)

If the orbitals are real, we are left with eightfold permutation symmetry:

〈pq|rs〉 = 〈qp|sr〉 = 〈rs|pq〉 = 〈sr|qp〉 (83)

= 〈rq|ps〉 = 〈sp|qr〉 = 〈ps|rq〉 = 〈qr|sp〉

[pq|rs] = [rs|pq] = [qp|sr] = [sr|qp] (84)

= [qp|rs] = [sr|pq] = [pq|sr] = [rs|qp]

In chemists’ notation, you’ll sometimes see the Coulomb integral written as [ii|jj] and
the exchange integral written as [ij|ji].

Spin Integration

Spin plays an important role in integral evaluation. The Hamiltonian we use is considered to
be “spin free” because none of its terms operates on spin. We are then able to separate spin
and spatial coordinates in the integral expansions. Take the Coulomb integral for instance:

J = [ii|jj] =

∫∫
ψ∗i (r1)ψi(r1)

1

r12
ψ∗j (r2)ψj(r2) dr1 dr2 (85)

×
∫∫

σ∗i (ω1)σi(ω1)σ
∗
j (ω2)σj(ω2) dω1 dω2 (86)
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In this case, we maintain that:

〈σi|σj〉 = δij (87)

For orbitals with the same spin, the spin integrals equate to unity. This yields only the
spatial integral.

J = [ii|jj] =

∫∫
ψ∗i (r1)ψi(r1)

1

r12
ψ∗j (r2)ψj(r2) dr1 dr2 (88)

×
∫∫

��
���

���:1
σ∗i (ω1)σi(ω1)���

���
��:1

σ∗j (ω2)σj(ω2) dω1 dω2 (89)

=

∫∫
ψ∗i (r1)ψi(r1)

1

r12
ψ∗j (r2)ψj(r2) dr1 dr2 (90)

= (ii|jj) (91)

For the exchange integral, the spin parts may or may not integrate out. The only K terms
that survive are those with orbitals with the same spin. Here are two examples:

K = [ij|ji] =

∫∫
ψ∗i (r1)ψj(r1)

1

r12
ψ∗j (r2)ψi(r2) dr1 dr2 (92)

×
∫∫

��
���

��:0
α∗(ω1)α(ω1)���

��
��:0

α∗(ω2)α(ω2) dω1 dω2 (93)

=

∫∫
ψ∗i (r1)ψi(r1)

1

r12
ψ∗j (r2)ψj(r2) dr1 dr2 (94)

K = [ij|ji] =

∫∫
ψ∗i (r1)ψj(r1)

1

r12
ψ∗j (r2)ψi(r2) dr1 dr2 (95)

×
∫∫

��
���

��:0
α∗(ω1)β(ω1)���

��
��:0

β∗(ω2)α(ω2) dω1 dω2 (96)

= 0 (97)

Note that we have chosen the overbar notation for orbitals with an electron in the down-spin
configuration β(ω). Those without overbars are orbitals with an electron in the up-spin
configuration α(ω).
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Basic Spin Algebra: Intrinsic angular momentum, or spin, is an quantum
mechanical degree of freedom. The inclusion of spin is mandatory for determining
expectation values that map onto physical observables. Here we give a very brief
overview spin algebra as it pertains to integral evaluation within the HF approximation.

Consider the z-axis spin projection operator:

Ŝz =
~
2
σz =

~
2

(
1 0
0 −1

)
(98)

Where σz is the Pauli matrix for the z-component. The eigenvectors of this operator
representation make up the standard orthonormal spin basis:

|α〉 =

(
1
0

)
|β〉 =

(
0
−1

)
(99)

Here are examples of spin integration between two spin functions:

〈α|α〉 =
(
1 0

)(1
0

)
=

∫
α∗(ω)α(ω) dω = 1 (100)

〈β|β〉 =
(
0 −1

)( 0
−1

)
=

∫
β∗(ω)β(ω) dω = 1 (101)

〈α|β〉 =
(
1 0

)( 0
−1

)
=

∫
α∗(ω)β(ω) dω = 0 (102)

〈β|α〉 =
(
0 −1

)(1
0

)
=

∫
β∗(ω)α(ω) dω = 0 (103)

Integral Evaluation

For many-electron systems, we will need to determine the elements of the h, J , and K
matrices. This, of course, will require solving a few integrals to scores upon scores of integrals.
There exists a defined set of rules quantum chemists use to evaluate one- and two-electron
integrals. They are called the Slater-Condon rules.
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The Slater-Condon Rules:

One-electron operators

Ô1 =
N∑
i

ĥi (104)

Case 1: No Difference

〈Ψ| Ô1 |Ψ〉 = 〈· · · p · · · |Ô1| · · · p · · · 〉 =
N∑
p

〈p| ĥ |p〉 (105)

Case 2: One Difference

〈Ψ| Ô1 |Φ〉 = 〈· · · pq · · · |Ô1| · · · rq · · · 〉 = 〈p| ĥ |r〉 (106)

Case 3: Two Differences or More

〈Ψ| Ô1 |Ξ〉 = 〈· · · pq · · · |Ô1| · · · rs · · · 〉 = 0 (107)

Two-electron operators

Ô2 =
N∑
i>j

1

rij
(108)

Case 1: No Difference

〈Ψ| Ô2 |Ψ〉 = 〈· · · pq · · · |Ô2| · · · pq · · · 〉 =
1

2

N∑
pq

〈pq| |pq〉 (109)

Case 2: One Difference

〈Ψ| Ô2 |Φ〉 = 〈· · · pq · · · |Ô2| · · · rq · · · 〉 =
N∑
q

〈pq| |rq〉 (110)

Case 3: Two Differences

〈Ψ| Ô2 |Ξ〉 = 〈· · · pq · · · |Ô2| · · · rs · · · 〉 = 〈pq| |rs〉 (111)

Case 4: Three Differences or More

〈Ψ| Ô2 |Ω〉 = 〈· · · pqr · · · |Ô2| · · · stu · · · 〉 = 0 (112)
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Fock Operator

The core Hamiltonian and the two-electron operators can be consolidated into an effective
one-electron operator known as the Fock Operator.

F̂ = ĥ+
Nocc∑
j

[
Ĵj − K̂j

]
(113)

The sum for Ĵj and K̂j runs over all occupied orbitals or, in essence, all electrons. Now the

question is: how do we use F̂ to systematically solve for the MO expansion coefficients and
their corresponding energies?

Constrained Optimization

Our goal within the HF approximation is to find a set of orbitals (MO coefficients) that
minimize the energy of the system. To do this we must employ the Lagrange method of
undetermined multipliers—a technique from calculus of variations (vide infra).

The Lagrange Multipliers: The extrema of a function under certain constraints may
be found by setting up a Lagrangian. We can begin by deriving a general expression
for this constrained optimization problem.

L = (some function)− λ (thing minus constraint) (114)

In HF, the constraint we maintain is the orthonormality of the MOs: 〈χi|χj〉 = δij.

L [{χi}] = EHF [{χi}]− λji
Nelec∑
ij

(〈χi|χj〉 − δij) (115)

The undetermined multipliers are represented by λji. EHF is a function of the set of
spin-orbitals {χi}. Note that the Lagrangian L is a functional, a function of a function.
A condition we enforce is that L must remain stationary with respect to infinitesimal
changes in the orbitals.

χi → χi + δχi L → L+ δL δL = 0 (116)

Taking the first variation of L and finding that δL is 0 verifies that we are at a
stationary point. With tools from complex and functional analysis, solving for the
variation in L is simple.
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Without going into much detail, the rules for Wirtinger derivatives show that we can
vary the bra and ket independently:

δ〈χi|χj〉 = 〈δχi|χj〉+ 〈χi|δχj〉 (117)

and with ERI permutation symmetries:

〈χiδχj|χiχj〉 = 〈δχjχi|χjχi〉 (118)

Note that in basic formulations such as this, we work with real orbitals. So, the
properties of regular partial derivatives w.r.t. real variables apply. Now let us find the
functional derivative δL:

δL = δEHF [{χi}]− λji
Nelec∑
ij

δ (〈χi|χj〉 − δij) (119)

= δEHF [{χi}]− λji
Nelec∑
ij

(〈δχi|χj〉+ 〈χi|δχj〉) (120)

Recall that the expectation value for the total energy (sans VNN) is:

EHF =

Nelec∑
i

〈i| ĥ |i〉+

Nelec∑
i>j

[
〈ij| Ĵj |ij〉 − 〈ij| K̂j |ij〉

]
(121)

Hint: indicating a sum over i > j in front of the two electron terms corrects for double
counting, otherwise a 1/2 is needed instead. Let’s start with the latter option.

=

Nelec∑
i

[
〈δχi| ĥ |χi〉+ 〈χi| ĥi |δχi〉

]
+

1

2

Nelec∑
ij

[
〈δχiχj|χiχj〉 (122)

+ 〈χiδχj|χiχj〉+ 〈χiχj|δχiχj〉+ 〈χiχj|χiδχj〉
]

− 1

2

Nelec∑
ij

[
〈δχiχj|χjχi〉+ 〈χiδχj|χjχi〉+ 〈χiχj|δχjχi〉

+ 〈χiχj|χjδχi〉
]
− λji

Nelec∑
ij

(〈δχi|χj〉+ 〈χi|δχj〉)

Let’s expand that last term.

Nelec∑
ij

λji〈δχi|χj〉+

Nelec∑
ij

λji〈χi|δχj〉 (123)
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Following the rules for complex conjugation, we can rewrite the second term from
above:

Nelec∑
ij

λji〈δχi|χj〉+

Nelec∑
ij

λ∗ij〈δχj|χi〉∗ =

Nelec∑
ij

λji〈δχi|χj〉+ c.c. (124)

Eigenvalues of Hermitian operators are real, so it’s reasonable to say that the
Lagrangian multipliers are also real:

λji = λ∗ij (125)

The abbreviation c.c. stands for complex conjugate. We can do the same complex
conjugatation procedure for all integral terms of EHF . Indistinguishability allows us
to swap the dummy indices for the electron coordinates (not written out explicitly
above). This is done in both the bras and kets for one- and two-electron integrals. On
top of that, notice each term has a complex conjugate which will be bundled together
in the c.c. term. The remaining integrals with either a δχi or a δχj in the bra will be
equivalent:

1

2

Nelec∑
ij

[
〈δχiχj|χiχj〉+ 〈δχjχi|χjχi〉

]
=

1

2

Nelec∑
ij

[
〈δχiχj|χiχj〉+ 〈δχiχj|χjχi〉

]
(126)

The J integrals reduce to:

1

2

Nelec∑
ij

2
[
〈δχiχj|χiχj〉

]
(127)

The addition of two equivalent integrals will cancel out the factor of 1/2 in front of the
ERI sums. The K integrals can be simplified in the same manner. The first variation
now becomes:

δL =

Nelec∑
i

〈δχi| ĥ |χi〉+

Nelec∑
ij

[
〈δχiχj|χiχj〉 − 〈δχiχj|χjχi〉

]
(128)

− λji
Nelec∑
ij

〈δχi|χj〉+ c.c.

Let’s factor out the bra:

δL =

Nelec∑
i

〈δχi|
[
ĥ |χi〉+

Nelec∑
j

[
〈χj|χiχj〉 − 〈χj|χjχi〉

]
− λji

Nelec∑
j

|χj〉
]

+ c.c. (129)
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The variation δχi is arbitrary—representing infinitesimal slices in the space contained
by the boundary conditions. For δL to be 0, the argument within the largest bracket
above must also be zero.

ĥ |χi〉+

Nelec∑
j

[
〈χj|χiχj〉 − 〈χj|χjχi〉

]
− λji

Nelec∑
j

|χj〉 = 0 (130)

Notice the emergence of the Fock operator.

ĥ |χi〉+

Nelec∑
j

[
Ĵj |χi〉 − K̂j |χi〉

]
− λji

Nelec∑
j

|χj〉 = 0 (131)

F̂i |χi〉 − λji
Nelec∑
j

|χj〉 = 0 −→ F̂i |χi〉 = λji

Nelec∑
j

|χj〉 (132)

Here we have the non-canonical Hartree-Fock equations.

Unitary Transformations

Notice that the expression we found does not represent an eigensystem since the action
of F̂ on χi does not return χi. However, we can find a unitary transformation of the
spin-orbitals that diagonalizes the Lagrange multiplier matrix λji. Unitary transformations
are said to be norm-preserving in that the magnitude (“length”) or inner product (〈ψ|ψ〉)
between two vector spaces is left unchanged.

Unitary Transformations: The diagonalization of a Hermitian matrix involves
finding a unitary matrix. A change of basis occurs under the auspices of a unitary
transformation. This results in a new set of orthonormal eigenvectors along with
corresponding eigenvalues of the newly generated diagonal matrix.

Unitary matrices are Hermitian and obey the following relationships:

UU † = U †U = 1 −→
∑
r

U∗rpUrq = δpq (133)

det(UU †) = det(U †U) = det(1) = 1 (134)

det(U †) · det(U) = det(U) · det(U †) = 1 (135)
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Here are unitary matrices that satisfy the conditions above:

U =

cos θ − sin θ

sin θ cos θ

 U † =

 cos θ sin θ

− sin θ cos θ

 (136)

Using Euler’s formula it is clear that:

det(U) = 1 (137)

An alternative expression also holds for φ ∈ [0, 2π). Note that it takes the form of a
rotation operator.

U = eiφ (138)

Let’s look at a basic example of how we use unitary operators to gain insight into
quantum systems. Consider an electronic wavefunction Ψ. Let us rotate the spin
components about the z-axis. The unitary operator that generates such a rotation is:

Uz(φ) = e−iφ(nz ·
Sz
~ ) or Uz(φ) = e−i(

φ
2 )(nz ·σz) (139)

The unit vector in the z-direction is nz and σz is again z Pauli matrix. Using Euler’s
identity we can expand the operator:

Uz(φ) = cos

(
φ

2

)
− iσz sin

(
φ

2

)
(140)

If we do a full 2π rotation about the z-axis, what is the action of Uz(φ) on |Ψ〉?

Uz(2π) |Ψ〉 = (−1) |Ψ〉 (141)

We merely have a global phase change:

|Ψ′〉 = − |Ψ〉 (142)

If we wish to revert back to the original Ψ from the transformed Ψ′, we must perform
another 2π rotation.

Uz(2π)Uz(2π) |Ψ〉 = |Ψ〉 (143)

After two unitary transformations, we get back Ψ. This approach works if we restrict
the types of unitary matrices to those with determinants equal to 1. This particular
class of unitary matrices belongs to the special unitary group SU(2). It just so
happens that for fermions, the Pauli matrices are suitable basis representations for
SU(2) symmetry. This defines the algebra we use to study the physics of electron spin.
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Roothaan-Hall Equations

Recall the non-canoncial HF equations:

F̂ |χl〉 = λjl

Nelec∑
j

|χj〉

We are going to turn this into an eigensystem by performing a unitary transformation. We
can create a set transformed orbitals like this (watch how you manage your dummy indices!):

χ′j = χ′l =

Nelec∑
l

χlUlj (144)

As we discussed earlier, certain representations of U that satisfy Hermiticity requirements
include Euler formulas. Since U can take angular arguments, it’s action on {|χi〉} is com-
monly referred to as orbital rotation. To obtain expectation values for F̂ , we introduce
a projective dual space of complex elements, a bra, to the left and right sides of the non-
canonical HF equation.

〈χk| F̂ |χl〉 = λjl

Nelec∑
j

〈χk|χj〉 (145)

If χk and χj are orthonormal, they become Kronecker delta δkj.

〈χk| F̂ |χl〉 =

Nelec∑
j

λjlδkj (146)

Choose j = k.

〈χk| F̂ |χl〉 =

Nelec∑
k

λkl (147)

Perform a unitary transformation on χk and χl.

〈
Nelec∑
k

Ukiχk| F̂ |
Nelec∑
l

Uljχl〉 =

Nelec∑
k

Nelec∑
i

U∗kiλklUlj (148)
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Substitute in the transformed orbitals. Operators taken out of their bra become a complex
conjugate.

〈χ′i| F̂ |χ′j〉 =
(
U †λU

)
ij

(149)

We obtain λ′ij after unitary transformation.

〈χ′i| F̂ |χ′j〉 = λ′ij (150)

At this point, you’ve probably caught on and realized that the Lagrangian multipliers λji
were actually the MO energies ε. The matrix ε is Hermitian, therefore it is always possible
to find a unitary transformation that diagonalizes it.

ε′ij =
(
U †εU

)
ij (151)

Substitute λ′ij → ε′ij

〈χ′i| F̂ |χ′j〉 = ε′ij (152)

ε′ is diagonal.

ε′ij = δijε
′
i (153)

Rewrite the non-canonical HF equations using our transformed basis and diagonal MO energy
matrix.

F̂ |χ′i〉 = ε′iδij |χ′j〉 (154)

Choose i = j

F̂ |χ′i〉 = ε′i |χ′i〉 (155)
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We now have the canonical Hartree-Fock equations—a seemingly true eigensystem
using canonical spin-orbitals. Here’s an important detail: although we invoke some “picture
change” with occupied orbital rotation, the Fock operator and the energies remain invariant
to unitary transformation—they don’t change. We can drop the primes and abbreviate
{|χ′i〉} as {|i〉}.

F̂ |i〉 = εi |i〉 (156)

If we want to solve this eigensystem, we’ll need to form the Fock matrix. Since we usually
don’t know the set of MOs {|i〉} apriori, we can more intuitively work in the AO basis {|ν〉}.
Let’s first project into a basis defined by known, normalized functions {|µ〉} and expand
things out:

〈µ| F̂ |
Nbasis∑
ν

cνi ν〉 = εi 〈µ|
Nbasis∑
ν

cνi ν〉 (157)

The expansion coefficients cνi are what we want to solve for. Rearranging further:

Nbasis∑
ν

cνi 〈µ| F̂ |ν〉 =

Nbasis∑
ν

cνi 〈µ|ν〉︸ ︷︷ ︸
Sµν

εi (158)

Summing over the number of basis functions describing each orbital, we obtain a matrix
representation of what looks to be a generalized eigenvalue problem. The atomic orbital
overlap matrix Sµν is used as a metric or a tool to give us a sense of distance in Hilbert space
where the orbitals reside.

Nbasis∑
ν

cνi Fµν = εi

Nbasis∑
ν

cνi Sµν (159)

We have defined the Roothaan-Hall equations. This expression can be further compacted:

FC = SCε (160)

Since the AO functions are not necessarily orthogonal, Sµν is not δµν . So, once again,
we don’t have a proper eigensystem. This can be rectified with Löwdin Symmetric
Orthogonalization (LSO).
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Löwdin Symmetric Orthogonalization: A new basis of orthogonal vectors may be
constructed via linear transformation of a non-orthogonal basis vectors. This method
reorients the vectors by the same angles to ensure the inner products between them go
to zero (e.g. picture two vectors, ~x and ~y, symmetrically pivoted away from each other
so that the angle between them is 90◦).

The chosen transformation matrix X is Hermitian and is built from the unitary
transformation that diagonalizes the inverse square root of the AO overlap matrix
S−1/2.

X = Us−
1/2U† (161)

The matrix s−1/2 is a diagonal matrix whose elements are inverse square roots of
overlap integrals. Since S is Hermitian, S−1/2 is also Hermitian. Due to the properties
of unitary matrices, the transformation matrix X ends up being conveniently equally
to S−1/2.

X = S−
1/2 (162)

We shall use this to define how the MO coefficient matrix is transformed into an
orthogonal one:

C′ = X−1C

= (S−
1/2)−1C

(163)

or conversely:

C = XC′

= S−
1/2C′

(164)

Substitute our new expression of C in the Roothaan-Hall equation:

FS−
1/2C′ = SS−

1/2C′ε (165)

Hit it on the left with S−1/2:

S−
1/2FS−

1/2︸ ︷︷ ︸
F′

C′ = S−
1/2SS−

1/2︸ ︷︷ ︸
1

C′ε (166)
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We have a transformed Fock matrix F′ and a transformed coefficient matrix C′ that
diagonalizes it to yield MO energies ε. Transforming or “rotating” C′ back to C gives
us eigenvectors of F and corresponding eigenvalues. In other words, we get orbitals
and orbital energies. Finally, a real eigensystem.

F′C′ = C′ε (167)

Hartree-Fock Energy

Think of the general chemistry picture of molecules. Say we have a closed-shell system of
α and β electrons that are restricted to sharing the same spatial parts of the orbitals they
occupy. How do we use the HF equations to describe the electronic structure of a molecule
in this framework? Let’s start with the closed-shell Fock operator:

F̂ = ĥ+

Nocc/2∑
i

[
2Ĵi − K̂i

]
(168)

All α and β one electron operators are implicit in ĥ. Since α and β electrons are paired up,
there are half as many occupied orbitals so sum over, so a factor of 2 appears in front of J
appears. The only K terms that survive are those with the same spins (see section on spin
integration). To get a better idea of what the total energy expression looks like, we expand
the Fock matrix Fµν :

〈µ| F̂ |ν〉 = 〈µ| ĥ |ν〉+ 〈µ|
Nocc/2∑
i

[
2Ĵi − K̂i

]
|ν〉 (169)

Remember J and K are actually:

Ĵi(r1) |ν(r1)〉 = 〈i(r2)|
1

r12
|i(r2)〉 |ν(r1)〉 (170)

K̂i(r1) |ν(r1)〉 = 〈i(r2)|
1

r12
|ν(r2)〉 |i(r1)〉 (171)

Projecting into 〈µ| gives us spatial ERIs.

Fµν = hµν +

Nocc/2∑
i

[
2(µν|ii)− (µi|iν)

]
(172)
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Recall coefficients {cλi} and AOs {|λ〉} build the functions in the basis set {|i〉}. As seen
before, they can be extracted out of the integrals (refer to section on Pople notation).

Fµν = hµν +

Nbasis∑
λσ

[
Nocc/2∑
i

c∗σicλi

][
2(µν|λσ)− (µσ|λν)

]
(173)

We define the total density in the AO basis Pλσ as:

Pλσ = 2

Nocc/2∑
i

c∗σicλi (174)

Our index i runs over half of the occupied orbitals. So, to account for the rest of the matrix
elements of Pλσ, we double the sum. Subsitute:

Fµν = hµν +
1

2

Nbasis∑
λσ

Pλσ

[
2(µν|λσ)− (µσ|λν)

]
(175)

Distribute the factor of 1/2:

Fµν = hµν +

Nbasis∑
λσ

Pλσ

[
(µν|λσ)− 1

2
(µσ|λν)

]
(176)

Sometimes, you’ll see the ERIs coupled to the density matrix within another into a two-
electron operator, Gµν .

Fµν = hµν +Gµν (177)

We have obtained a simpler expression for Fµν . The electronic energy Eelec is determined
with the following:

Eelec =
1

2

Nbasis∑
µν

Pµν

[
hµν +

Nbasis∑
λσ

Pλσ

[
(µν|λσ)− 1

2
(µσ|λν)

]]
(178)
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Adding the nuclear-nuclear repulsion energy VNN and simplifying further yields the total HF
energy:

EHF =
1

2

Nbasis∑
µν

Pµν

[
hµν +Gµν

]
+ VNN (179)

The benefit of using these forms of Fµν and EHF is that they can be computed using basic
matrix algebra. As such, they are quite intuitive to implement on a computer.

Self-Consistent Field Procedure

enter SCF cycle

input:
basis set {χµ},

geometry {rAB},
atomic #′s {ZA}

compute & store:
AO overlap Sµν ,

transformation matrix X,
core Hamiltonian hµν ,

molecular integrals (µν|λσ)

compute & store:
intial density Pnµν using
guess MO coefficients

{cnµi}

compute:
Gµν using density Pnµν

and ERIs (µν|λσ)

build:
Fock matrix Fµν using

hµν and Gµν

transform:
F′ = X†FX

diagonalize:
F′ to obtain C′ and ε

store:
MO energies ε

transform & store:
C = XC′

compute & store:
new density Pn+1

µν using
new MO coefficients

{cn+1
µi }

is Pn+1
µν ≈ Pnµν?set Pn+1

µν = Pnµν
self-consistency

is achieved

exit SCF cycle

output:
EHF and

other properties

compute:
EHF using the

converged density

yes
no
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The so-called self-consistent field (SCF) procedure presents a workflow to iteratively solve
the many-electron problem. We begin by selecting a molecular geometry and a basis set of
AOs. We then solve the integro-differential equations needed to construct the integrals, AO
overlap, and the core Hamiltonian. With a set of guess MO coefficients, we create a guess
density used to build the Fock matrix. We transform the Fock matrix, diagonalize it, and
back-rotate the transformed orbitals. A new density is computed and compared to the old
density. If they are sufficiently similar (by some arbitrary threshold), we proceed to calculate
the total HF energy and other miscellaneous properties. If not, we set the newest density
equal to the old density and loop back to the fock build step. The cycle repeats until the
density converges. At which poi we say that the system has reached self-consistency.

Needless to say, performing an SCF calculation can require a large amount computational
resources. The main numerical bottleneck is the computation and storage of the four-center
molecular integrals, which scales O(N4). In this instance, N is the number of AO basis
functions. Increasing N will drastically increase the polynomial time complexity. This is
where discetizing Hilbert space (i.e. truncating the basis) helps reduce the computational
cost and keep things tractable, but at the expense of some degree of accuracy. As discussed
earlier, some symmetry can be exploited. However, memory resource allocation will always be
a rate-limiting step. Diagonalizing of the Fock matrix scalesO(N3) times some multiplicative
factor for every SCF cycle. The integrals only need to be computed once, so the secondary
bottleneck is attributed to the Fock build step. Much progress has been made with respect
to code optimization and hardware development that aim to accelerate the performance of
HF programs.

Correlation

The term “correlation energy” is attributed to Löwdin who defined it as:

Ecorr = ε0 − EHF (180)

The missing correlation energy Ecorr is the difference between the exact, non-relativistic
energy ε0 and the HF energy EHF . Post–Hartree–Fock methods emerged to go beyond
the HF approximation. For example, there is Møller–Plesset perturbation theory (MP).
configuration interaction (CI), and coupled cluster (CC)—all of which are higher echelons of
theory that seek to add electron correlation. HF, on its own, has Fermi correlation. This type
of correlation comes from the antisymmetry of fermions and, consequently, the action of the
exchange operator on electrons with parallel spin. Experience with different levels of theory
can help us build intuition for selecting the appropriate methods for chemical investigation.

Here we have a simple Pople diagram—a representation of the choices we have to make in
order balance chemical accuracy and computational cost.
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Afterthoughts

Other classes of HF methods can be obtained by varying the constraints on spin. In this
document, we outlined restricted Hartree-Fock (RHF). In RHF, α and β electrons share
the same spatial functions and every orbital is doubly occupied—enforcing a closed-shell
system. We will very briefly go over other versions of HF.

In unrestricted Hartree-Fock (UHF), α and β electrons reside in separate orbitals. This
permits our system to be open-shell. UHF solutions may suffer from spin contamination.
This is a virtual artifact of a single determinant approximation. Because α and β orbitals
don’t have to perfectly overlap like in RHF, the total spin-squared expectation value 〈Ŝ2〉 in
UHF will be greater than or equal to the exact value for a specific spin state. Although an
eigenstate of the Ŝz operator, a spin contaminated wavefunction will not be an eigenstate of
Ŝ2 and, since Ŝ2 commutes with the non-relativistic electronic Hamiltonian, calculated prop-
erties and bond dissociation energies will not be accurate. We say that a spin contaminated
state posseses multi-determinantal character in that it will require a linear combination
of degenerate or near-degenerate SDs to obtain the proper spin quantum numbers. Spin
projection techniques can be used to rectify this problem. Obtaining UHF solutions requires
solving two HF equations, one for α orbitals and one for β orbitals. These are known as the
Pople–Nesbet equations:

FαCα = SCαεα (181)

FβCβ = SCβεβ (182)
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Lastly, in general Hartree-Fock (GHF), we lose both Ŝ2 and Ŝz symmetry. GHF puts
no restrictions on the orbitals other than orthonormality. Because of this, we are allowed
to project our spin-orbitals into the complex plane and use complex coefficients. So, the
spin-orbitals may be written as a linear combination of α and β spin components:

χi(x) = ψαi (r)α(ω) + ψβi (r)β(ω) (183)

where

ψαi (r) =
N∑
µ

cαµiφµ(r) and ψβi (r) =
N∑
µ

cβµiφµ(r) (184)

When either {cαµi} or {cβµi} is zero for all µ of orbital i, we would get the UHF case. Similarly,

if {cαµi} and {cβµi} happen to be the same, we fall into the RHF case. Hence, due to certain
constraints, RHF and UHF are special cases of GHF.

By relieving our system of constraints, the increase in degrees of freedom can lead us to a
lower variational solution. Albeit, at the cost of breaking symmetry.

HF methods have undergone extensive study and development. The reader is invited to
investigate how HF methods compare with DFT or correlated wavefunction methods.
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Selected Exercises

1. In RHF, the density matrix is defined as Pµν = 2

Nelec/2∑
i

c∗µicνi. Note that the density

matrix is self-adjoint, P = P†. The AO overlap matrix is defined as Sµν = 〈µ|ν〉. The
trace of PS is equal to the contraction of these two matrices. Show that tr (PS) = Nelec.
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2. Given that C is a matrix of MO coefficients and that the S is the AO overlap matrix,
show that C†SC = 1. How is this related to the MO overlap?
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3. Show that J and K are invariant to unitary transformation.

Begin with the sum of J over all occupied orbitals:

Nocc∑
i

Ji =
Nocc∑
i

∫
χ∗i (x2)

1

r12
χi(x2) dx2

Transformed orbitals would be defined as:

χ′i =
Nocc∑
j

χjUji
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4. Diagonalize the transformed Fock matrix F′ to obtain eigenvector matrix C′ and
eigenvalue matrix E. Use C′ to rotate back to C.

F′ =

[
0.098604 −0.739481
−0.739481 0.098604

]
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5. In RHF, the total SCF energy is sometimes written as:

EHF =
1

2

[
tr
[
Pµν(hµν + Fµν)

]]
+ VNN

Given P, H, and F below, compute EHF . Let VNN = 0.881962 Hartrees.

F =

[
−0.457044 −0.665389
−0.665389 −0.457044

]
H =

[
−1.220844 −1.129914
−1.129914 −1.220844

]
P =

[
0.570971 0.570971

0.570971 0.570971

]
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